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Abstract

Radiographic testing is a well-established non-destructive testing method to detect subsurface welding defects. In this paper, an automatic

computer-aided identification system was implemented to recognize different types of welding defects in radiographic images. Image-

processing techniques such as background subtraction and histogram thresholding were implemented to separate defects from the background.

Twelve numeric features were extracted to represent each defect instance. The extracted feature values are subsequently used to classify welding

flaws into different types by using two well-known classifiers: fuzzy k-nearest neighbor and multi-layer perceptron neural networks classifiers.

Their performances are tested and compared using the bootstrap method. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Inspection of welded structures is essential to ensure that

the quality of welds meets the requirements of the design

and operation, thus to assure safety and reliability. A variety

of NDT methods are available for the inspection of welding

defects [5]. Visual inspection is the primary evaluation

method of many quality control programmes. It can be

easily carried out, inexpensive, and usually does not require

special equipment other than magnifying glasses, boro-

scopes, or television camera systems. It is used most

effectively for the inspection of welds where quick detection

and correction of flaws or process related problems can

result in significant cost savings. For more critical welded

structures such as high-pressure vessels, the nature,

location, and magnitude of the flaws must be mapped in

order to determine their acceptability by further mechanics

analyses. To this end, more sophisticated NDT methods

such as ultrasonic testing (UT) and radiographic testing

(RT) are needed. Both UT and RT methods have their

limitations, e.g. defects lying in certain plains can be picked

up on one and not the other and vice versa. The two

techniques complement one another and should be used

together wherever possible and where price allows.

Ultrasonic inspection uses sound waves of short

wavelength and high frequency to detect flaws. Usually

pulsed beams of high frequency ultrasound are used via a

hand-held transducer which is placed on the specimen. Any

sound from that pulse that returns to the transducer like an

echo is shown on a screen which gives the amplitude of the

pulse and the time taken to return to the transducer. Defects

anywhere through the specimen thickness reflect the sound,

back to the transducer. Flaw size, distance and reflectivity

can be interpreted. Automated UT systems are now

commercially available (http://www.globalxray.com/auto_

ut.html).

RT is the other commonly used NDT method for

detecting internal welding flaws. It is based on the ability

of X-rays or g-rays to pass through metal and other

materials opaque to ordinary light, and produce photo-

graphic records by the transmitted radiant energy [10].

Because different materials absorb either X-ray or g-rays to

different extent, penetrated rays show variations in intensity

on the receiving films. That provides a means to examine the

internal structure of a weld.

Traditionally, experienced workers are required to

evaluate the weld quality based on radiographic images.

Therefore, the results very much depend upon the capability

and experience of the operator. Unfortunately, the manual

interpretation process is time-consuming and the results

could be very subjective, inconsistent, and sometimes
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biased. Therefore, it is desirable to develop a computer

system to increase the objectivity, consistency, accuracy,

and efficiency of RT inspection. To the best of our

knowledge, no commercially viable automated RT system

exists today. Nevertheless, several efforts have been

devoted to the development of such a system. In our view,

an automated RT system should have three major functions:

segmenting welds from the background, identifying the

flawed segments in the weld, and classifying different types

of welding flaws. These developments rely mostly on

techniques such as image processing, feature extraction, and

pattern recognition. Past studies in each one of the above-

mentioned areas are briefly reviewed in the following.

Liao and Ni [16] proposed a methodology for the

extraction of welds from digitized radiographic images. The

method was based on the observation that the intensities of

pixels in the weld area distribute more as a Gaussian

distribution than other areas in the image. This method had

been proved effective, however, only to segment linear

welds. Subsequently, Liao and Tang [17] applied a multi-

layer perceptron (MLP) neural network based procedure for

the same application. This method was successfully applied

to segment both linear and curved welds. Another study [14]

employed fuzzy classifiers, specifically fuzzy K-NN and

fuzzy c-means, instead of neural networks as the pattern

classifier. This method can also be applied to segment

curved welds, and can handle varying number of welds in

one radiographic image.

After welds are successfully extracted, of interest is to

identify the defect areas in welds. Daum et al. [3]

proposed a defect segmentation algorithm based on a

background subtraction algorithm. This algorithm was

proved effective regardless the defect types. But it had

difficulties in detecting small defect regions (4–6 pixels).

Gayer et al. [6] described a two-step process for the

automatic recognition of welding defects through radio-

graphy. A fast search for defect regions was followed by

identifying and locating defects. The fast search could be

accomplished either by comparing defects with known

defects’ templates, or by thresholding the image. This

method tried to imitate the way a human inspector

inspects radiographs: first, a general glance with coarse

resolution, followed by fine focusing on defective

regions. Hyatt et al. [9] presented a multiscale method

for segmenting flaw indications from the background

radiographic images. The method was designed to

remove the overall background structure while reserving

the defect details. Another welding flaw detection method

was presented by Liao and Li [15]. This method was

based on the observation that welding flaws usually result

in distortions in the overall line profile of a weld. The

whole process consisted of four parts: preprocessing,

curve fitting, profile-anomaly detection, and postprocess-

ing. Test results indicate that their method has high

successful detection rate and an acceptable false alarm

rate. Liao et al. [13] proposed another approach using

fuzzy clustering methods. Twenty-five features were

selected for each line of the radiographic image. The

results showed that fuzzy K-NN outperformed fuzzy c-

means. Murakami [18] offered a simple algorithm for

defects detection, which was achieved by conducting

local arithmetical operation to a limited region and by

thresholding.

To date, there is not much research done on automati-

cally identifying the type of a welding defect. Murakami

[18] classified defect types with an expert system. The

features used in the expert system include the shape,

position and intensity level of the defect pattern. However,

results from this method strongly depended on the types of

defects. Using their system detecting blowholes is relatively

easy; but detecting cracks is difficult. Kato et al. [11]

proposed another expert system for identifying different

types of welding defects. The identification rules were based

on the interviews with expert inspectors. Six features were

extracted from each welding defect, which cover infor-

mation about shape, intensity and location. The perform-

ance of this method was tested and found even better than

the judgments from human expert inspectors. Aoki and Suga

[1] used a three-layer artificial neural network to identify

defect types. Ten discrimination features were automati-

cally generated from each defect by image processing

techniques. The whole algorithm achieved a successful rate

of 92.6%.

This paper presents a system developed for classifying

welding defect types as a continuation of our research in this

area.

2. Methodology

Fig. 1 shows the major steps of our welding defect

classification system. This system was realized using three

major techniques: digital image processing, feature extrac-

tion, and pattern classification. Digital image processing

techniques are used to extract the principal objects, which

are welding defects in this research, from radiographic

images. Usually, defects in the original X-ray image are low

in number comparing with its background information, and

mixed with noises coming from various processes in the

formation of X-ray images. Digital image processing

techniques are employed to lessen the noise effects and to

improve the contrast, so that the principal objects in the

image can be more apparent than the background. Feature

extraction is necessary to obtain a set of features that can

describe the characteristics of welding defects. These

features should be small in number and high in discrimin-

atory power. Pattern classification methods are needed to

analyze feature data and make a prediction of the defect

type. Pattern classification algorithms might differ in

efficiency and accuracy. Therefore, two renowned super-

vised algorithms: fuzzy k-nearest neighbor (K-NN) and

MLP neural networks are investigated.
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2.1. Noise reduction

The gray level values of the noise pixels are much higher

than those of their immediate neighbors. As noise is

characterized as high frequency values, low-pass filtering

methods, like a median filter, can be used to effectively

remove the noise pixels. The median filter deploys a small

mask template, which is usually a 3 £ 3 or 5 £ 5 structuring

element. The template operation may be calculated by either

correlation or convolution operators. The median filter

replaces a pixel’s gray level with the median value of its

neighborhood. This operation improves on other filtering

methods by preserving edges while suppressing noises. The

algorithm is presented below

g0ðx; yÞ ¼ median{gðx1; y1Þlðx1; y1Þ is in Nðx; yÞ} ð1Þ

where Nðx; yÞ is the immediate neighbors of the pixel ðx; yÞ:

2.2. Contrast enhancement

Radiographic images usually have poor contrast and a

lack of detail. The aim of the contrast enhancement is to

improve the quality of radiographic images by highlighting

the useful information while leaving the unimportant

information intact. One reason for poor contrast in radio-

graphic images is the limited range of intensities the image

capture device is able to accommodate [8]. In the original

radiographic image, the distribution of gray levels is highly

skewed towards the darker side. Defects in these areas can

hardly be recognized. Therefore, it is desirable to stretch the

histogram distribution to an evenly distributed one, like a

rectangular shape instead of a skewed shape. The histogram

equalization algorithm proportionally modifies the original

gray level values to the range of 0 and 255, as shown in

Eq. (2) below:

g0
n ¼ gmin þ ðgmax 2 gminÞCn ð2Þ

In the above equation g0
n is the modified gray level value for

a pixel, and Cn is calculated by

Cn ¼
Xi

k¼0

gk=
Xj

k¼0

gk ð3Þ

where i is the gray level value of the current pixel, j is the

maximum gray level value, which is 255 in this case, in the

available range. This algorithm spreads the gray levels to a

wide range, thus showing details in areas with a high

brightness gradient.

2.3. Defect segmentation

2.3.1. Background subtraction method

Background subtraction method (BSM) is one of the

commonly used algorithms for image segmentation. The

background is defined to be the regions in an image that are

not significant to the analyst [2]. Because defects are

superimposed on other image structures like the shape of the

welding bead; defects in an image can be acquired by

subtracting the background from the original image. Daum

et al. [3] noticed that the defect indications in an image

could be characterized by high spatial frequencies; while the

normal welding bead with its reinforcement causes only a

gradual gray level change (low spatial frequencies). There-

fore, a gradual gray level change was simulated by a two-

dimensional (2D) background model fBðx; yÞ and subtracted

from the original image f ðx; yÞ: This method can be applied

to all types of defects and is followed in this paper. Fig. 2

shows how the background subtraction method ideally

works. The background model fBðx; yÞ was estimated by

smoothing the brightness distribution, as shown in Fig. 2b.

Fig. 2c gives the result of the background subtraction, in

which only the defect area is left in the image. Note that Fig.

2b was manually constructed; an actual model would not be

nearly as ideal.

The background model fBðx; yÞ was estimated by the

surface-fitting algorithms implemented by an analytical

software—TableCurve3D from SPSS. Each weld image is

imported in the format of 3D data, which indicate pixel

position across the weld bead, along the weld bead, and

pixel gray level. Given a weld image (Fig. 3a) with the

corresponding 3D data display shown in Fig. 3b, Table-

Curve3D tests the selected functions in its library and ranks

them based on the least-squared error. Fig. 3c shows the

background model constructed based on a polynomial

function, Z ¼ a þ bx þ cx2; with a r2 value of 0.86. Fig. 3d

is the 3D display of Fig. 3c. This simple function with

constant y was chosen to ensure that defect is always

Fig. 1. Procedure for the automatic classification of welding defect types.
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preserved as much as possible. Higher noises are thus

unavoidable as evident in the subtracted image (Fig. 4a).

This leads to the discussion of the next operation.

2.3.2. Histogram thresholding method

After the background is subtracted from the image,

defects in the resultant images still need to be separated

from noises by a thresholding operation. Aoki and Suga [1]

implemented a histogram thresholding method to discrimin-

ate between defects and the background. Since the

frequency of background and noises is much higher than

that of defects, a sharp gradient exists between the noise

class and the defect class. In order to classify the two

classes, a tangential fitting line is calculated by the least

square method (LSM). With LSM, we can fit a straight line,

y ¼ a þ bx; for a given set of data points. The sum of

squares of the distances from those data points to this

straight line is a minimum. The parameters, a and b; can be

determined by the following equations:

a ¼ ðN
X

xy 2
X

x
X

yÞ=ðN
X

x2 2 ð
X

xÞ2Þ ð4Þ

b ¼ ð
X

y
X

x2 2
X

x
X

xyÞ=ðN
X

x2 2 ð
X

xÞ2Þ ð5Þ

The threshold is determined as the crossing point of the

fitted line and the horizontal axis. Those pixels with gray

levels that are higher than the threshold value are considered

as noises and eliminated. An example is shown in Fig. 4.

2.4. Feature extraction

In this study, features describing the shape, size, location,

and intensity information of welding defects were extracted.

1. Distance from center. More specifically, the distance

between the center of defect and the central-line of the

welding-bead (Fig. 5).

2. Radius mean, standard deviation, and circularity. This

set of features measures the circularity of defects.

Circularity is defined as the standard deviation, sr;
divided by the mean radius, mr

mr ¼

X
ðx;yÞ in Ab

½ðx 2 �xÞ
2 þ ðy 2 �yÞ

2�1=2

#ðAbÞ
ð6Þ

Fig. 3. Fitting background with TableCurve3D. (a) Weld image; (b)

topological display in TableCurve3D; (c) estimated background ðZ ¼

a þ bx þ cx2Þ; (d) topological display of the estimated background.
Fig. 2. Background subtraction method. (a) Original image; (b) background

estimate; (c) defect area detected by subtracting background from original

image.
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s2
r ¼

P
ð½ðx 2 �xÞ2 þ ðy 2 �yÞ2�1=2 2 mrÞ

2

#ðAbÞ
ð7Þ

where Ab is the set of boundary points of defect, #ðAbÞ is

the number of boundary points, x and y are coordinates of

boundary pixels around the defect, �x and �y are

coordinates of the center of mass of defect object. �x

and �y are calculated as follows

�x ¼

ÐÐ
xKðx; yÞdx dy

area
ð8Þ

�y ¼

ÐÐ
yKðx; yÞdx dy

area
ð9Þ

area ¼
ðð

Kðx; yÞdx dy ð10Þ

where Kðx; yÞ is 1 for the pixel ðx; yÞ that is in the defect,

and 0 elsewhere.

3. Compactness: This feature measures the object shape

that is calculated by

compactness ¼
perimeter2

area
ð11Þ

where perimeter is the number of boundary points around

the defect area. A circular object has a smaller

compactness value than a non-circular object.

4. Major axis. The orientation of the defect object

stretching in the weld. It is calculated as the angle

between the orientation of defect and the horizontal line

(Fig. 6).

5. Width and length. Length is the projection of defect

along the major axis whereas width is the projection

along the minor axis, which is perpendicular to the major

axis (Fig. 7).

6. Elongation. Eq. (12) computes the ratio between the

length and width of the defect object, which takes a value

between 0 and 1

elongation ¼
width

length
ð12Þ

7. Heywood diameter. The diameter of a circle having an

equivalent area to that of the defect (Fig. 8).

8. Average intensity and standard deviation of intensity. It

gives the information about the brightness of the defect.

2.5. Pattern classification

2.5.1. Fuzzy k-nearest neighbor

The fuzzy k-nearest neighbor (K-NN) algorithm is a

supervised classifier. It requires the use of training data,

which has to be comprised of representative examples from

different classes.

The fuzzy k-nearest neighbor (K-NN) algorithm [12] has

the following steps:

1. Initialize k; where 1 # k # n:
2. Find the k-nearest neighbor for each x by comparing the

distance between x and each training instance. Label the

k--nearest neighbor as x1;…; xj;…; xk:
3. Assign the membership value of x belonging to class i

Fig. 7. Width and length of the defect object.

Fig. 4. Result of histogram thresholding. (a) Result of BSM; (b) histogram

of defect image after BSM; (c) binary image after threshold.

Fig. 5. Distance from center.

Fig. 6. Major axis of the defect object (u is the angle between the major axis

and horizontal line).
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using the following equation

uiðxÞ ¼

Xk

j¼1

uijð1=kx 2 xjk
2=ðm21Þ

Þ

Xk

j¼1

ð1=kx 2 xjk
2=ðm21Þ

Þ

ð13Þ

Repeat steps 2 and 3 for all test data.

The variable m in Eq. (13) determines how heavily the

distance is weighted when calculating each neighbor’s

contribution to the membership value. As m increases, the

neighbors are more evenly weighted, and their relative

distances from the point being classified have less effect

[13]. The commonly used m value is 2. The symbol ‘k·k’
denotes Euclidean distance in multi-norm, which is defined

as

kx 2 xjk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXQ
q¼1

ðxq 2 xqjÞ
2

vuut ð14Þ

where xq is the qth feature of vector x:
The membership value uij; which is the membership of xj

in class i; is computed by the following equation:

uij ¼
1; if i is the class that xj belongs to

0; if i is not the class that xj belongs to

(
ð15Þ

In short, Fuzzy K-NN first uses a training dataset to get

membership values of how training vectors belong to each

class. After training, fuzzy K-NN algorithm can determine

the class of a test instance based on its distance from nearest

neighbors and each neighbor’s membership in each class.

Generally, the test instance is assigned the class that is

represented by the majority of its k-nearest neighbors in the

training dataset.

2.5.2. Multi-layer perceptron neural network

The MLP neural network is one of the best-known

supervised feedforward networks. Fig. 9a shows the

structure of an MLP with three layers: an input layer, and

output layer, and a hidden layer between input and output.

Neurons in the hidden layer, as shown in Fig. 9b, sum up

values from input nodes after weighting them with

appropriate weights Wji and compute the output Yj as a

function f of the summation.

The backpropagation (BP) algorithm [19], a gradient

descent algorithm, is the most commonly adopted MLP

training algorithm. It computes the change DWji on the

weight of a connection between an input neuron Xi and a

neuron j as follows:

DWij ¼ hdjXi ð16Þ

where h is the learning rate and dj is a factor determined by

the type of neuron j: If j is a neuron in the hidden layer

dj ¼
›f

›netj

 !X
q

Wqjdq ð17Þ

If j is a neuron in the output layer

dj ¼
›f

›netj

 !
ðY ðtÞ

j 2 YjÞ ð18Þ

where netj is the weighted sum of input nodes connected

with neuron j; Y ðtÞ
j is the target output for neuron j; and dq is

obtained from the neuron q connected to the output neuron j

already. Therefore, the BP algorithm starts with the output

layer and iteratively computes the d values for neurons in all

layers. The weights can be updated right after one training

pattern or after the whole set of training patterns.

It is common to add a momentum factor into the BP

algorithm to increase its learning speed. The momentum

factor determines how much the previous weight change

influences the new weight change. The new equation for

DWji is shown as follows

DWjiðk þ 1Þ ¼ hdjXi þ mDWjiðkÞ ð19Þ

where m is the ‘momentum’ coefficient with value 0 #

m # 1:
The MLP neural network is to build a mapping

relationship between input neurons and output neurons by

Fig. 9. Structure of MLP neural networks. (a) A MLP with three layers; (b)

a neuron in hidden layer.

Fig. 8. Heywood diameter.
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updating the weights associated with all the connections

between layers.

2.6. Performance evaluation

The performance of a classifier is measured by its

accuracy, which expresses the degree of success in correctly

classifying new instances. Three methods are commonly

applied for estimating the accuracy. They are holdout with

random re-sampling, cross-validation, and bootstrap [4].

Because there is a relatively small dataset in the subject

application, the bootstrap method was applied to obtain a

more exact accuracy for a classification algorithm [20].

The bootstrap method randomly selects instances to form

a training set from the raw dataset with replacement. The

remaining instances become the testing set. u 0
i represents the

accuracy estimator for the ith testing set. The process is

repeated b times. The 0.632 bootstrap estimator u 0
B is

defined as

u 0
B ¼

1

b

Xb

i¼1

ð0:632u 0
i þ 0:368u 0

cÞ ð20Þ

where d 0
c is the optimum accuracy estimator, which is

calculated by using the initial data set for both training and

testing purposes. This value is always equal to one for fuzzy

K-NN and MLP neural network, because the testing data can

easily achieve 100% accuracy simply by memorizing the

training data.

3. Test results and discussion

3.1. Source of data

Four X-ray film strips of about 3.5 in. wide by 17 in. long

each were digitized using the NDT SCAN II digitizer. The

strips were digitized at 70 mm resolutions and saved as an

image with 5000-pixel by 6000-line resolution. Every image

thus contains four welds and each weld may contain either

no defects or a number of different defects. Also, there are

reference objects in the image to identify the position of

defects, or to calibrate the X-ray. The digitized images were

all initially stored in VICOM file format.

Human experts provided a priori knowledge about the

location and type of defects in each image. The focus of this

paper is to find the relationship between the characteristics

of a weld defect and the type it belongs to. Therefore, each

segment of a radiographic weld image, which contains a

defect, was extracted manually along the edges of welding

bead from the raw image. Totally 147 image segments

covering six types of defects were extracted from 88

radiographic weld images. Fig. 10 shows the distribution of

defect types. Sample defects of each type are shown in

Fig. 11.

3.2. Results of MLP neural networks

Hundred and eight training data were selected from the

entire set of 147 data and used to train the MLP neural

network. Special attention was paid to ensure that instances

of all different types are included. The remaining 39 data

Fig. 10. Distribution of welding defects in the test data.

Fig. 11. Selected six types of welding defects.
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were split into 12 and 27 for testing and validation. The

testing and validation data were used to test the capability of

trained neural networks. The output layer of all MLP neural

networks has six nodes; each node corresponds to one defect

type. The random seed and the number of nodes in the

hidden layer are known to affect the performance of neural

networks. Therefore, tests were performed to determine the

optimum parameter values. Learning rate, which determines

how large an adjustment MLP will make when it trains data,

was set at the default value, 1.000. The default value of

training tolerance, 0.100, was also consistently used. It

means the output must be within 10% of the pattern range (5

for the subject application) to be considered ‘good’ in the

training process. The testing tolerance was consistently set

at 0.499, which means that a testing datum is considered

‘good’ if the predicted pattern is in the interval of

½0:501; 1:499� (or the error is ,0.499). The results, as

given in Table 1, indicate that among all those tested, 48

hidden nodes perform the best.

The final accuracy of the MLP neural network classifier

is estimated by the statistical bootstrap method. In bootstrap,

training set, testing set and validation set are required to be

randomly selected from the original dataset for b times.

Based on the accuracies from these b runs, the final accuracy

is estimated. The results are shown in Table 2 for five runs.

These results were obtained using MLP models with 48

hidden nodes. By plugging the average validation

accuracy u 0
i for each run into Eq. (20), the accuracy

Table 1

Test result for number of hidden nodes in MLP neural network

# of hidden nodes Random seed Training accuracy (%) Testing accuracy (%) Validation accuracy (%)

12 6 100.00 91.67 88.89

12 98.15 91.67 88.89

18 80.56 91.67 92.59

24 84.26 83.33 92.59

Average 90.74 89.58 90.74

24 6 100.00 91.67 88.89

12 100.00 91.67 92.59

18 100.00 83.33 92.59

24 100.00 91.67 81.48

Average 100.00 89.58 88.89

36 6 100.00 91.67 96.30

12 100.00 91.67 88.89

18 100.00 83.33 88.89

24 100.00 91.67 85.19

Average 100.00 89.58 89.81

48 6 100.00 91.67 88.89

12 100.00 91.67 92.59

18 100.00 91.67 96.30

24 100.00 83.33 96.30

Average 100.00 89.58 93.52

60 6 100.00 83.33 92.59

12 100.00 91.67 92.59

18 100.00 91.67 88.89

24 100.00 83.33 96.30

Average 100.00 87.50 92.59

Table 2

Results of validation accuracy from MLP neural networks

Bootstrap Random seed (%) Average validation accuracy ðu 0
iÞ (%) 0:632u 0

i 0:368u 0
c

P
6 12 18 24

#1 81.48 85.19 81.48 88.89 84.26 0.533 0.368 0.901

#2 96.30 92.59 96.30 85.19 92.59 0.585 0.368 0.953

#3 88.89 88.89 85.19 88.89 87.96 0.556 0.368 0.924

#4 85.19 88.89 92.59 85.19 87.96 0.556 0.368 0.924

#5 88.89 85.19 88.89 85.19 87.04 0.550 0.368 0.918

Accuracy estimate: 92.39%

u 0
c : optimistic accuracy is equal to 1.
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estimate of MLP neural networks is accordingly

determined to be 92.39%.

3.3. Results of fuzzy K-NN

Similar to the MLP neural networks, the original data set

of 147 feature vectors was randomly divided into training,

testing, and validation subsets, with each having 108, 12,

and 27 instances, respectively. Using a different number of

nearest neighbors (parameter k ) most likely will produce a

different classification accuracy. Therefore, different K

values were tested. The results are shown in Table 3 for

testing accuracy and validation accuracy. The results

indicate that smaller k values ð1 or 5Þ give higher accuracy.

Note also that the results of validation accuracy for K ¼ 15

and 20 are identical.

The bootstrap accuracy estimate method was applied to

fuzzy K-NN as well. The training and validation datasets in

each run were identical to those used in MLP neural

networks for fair comparison. In each run, the k value of 5

was consistently used. The final accuracy estimate for fuzzy

K-NN based on the bootstrap method is 91:57%; as shown in

Table 4.

3.4. Discussion

The test results indicate that the proposed methodology

achieves a classification accuracy of , 92% for both

classifiers used: MLP neural networks and fuzzy K-NN.

Since that the a priori knowledge about these defect types

were established by the human experts for this study, this

performance can be interpreted as the ‘likely’ difference

between the automated system and the human experts.

Further study is necessary to determine the real difference.

How is the performance of our system compared with

previous studies? Unfortunately, no one knows the answer

because different sets of radiographic images were used in

different studies. This calls for the need to establish a

benchmark image set in order to perform a sensible

comparison. Is , 92% classification accuracy good

enough? The answer depends on the intended use of the

welded structure and the type, location, and size of the flaws

missed, as well as on how costly a repair work is. Ideally,

one would like to have a perfect automated RT system that

gives 100% classification accuracy. Unfortunately, a

realistic system will always fall short of that. Therefore,

we should strive to develop an automated RT deemed

considered trust worthy by human experts. Such a system

might be imperfect and requires crosschecks by human

experts some times.

4. Conclusions

The results obtained and the knowledge learned in this

research can be summarized as follows:

1. Digital image processing techniques simulate the func-

tions of human visions, which can derive useful

information from images. In some aspects such as

enhancement, digital image processing outperforms

human visions by improving the quality of images.

2. The 3D fitting function algorithms implemented in

TableCurve3D are proved to be effective for the

construction of the background model for the back-

ground subtraction method. These algorithms give

reasonable results with greater speed.

3. For the representation of defect objects, twelve features

extracted describing the location, shape, size, and

intensity information of defects are shown to be useful

although perfect classification was not attained.

4. For the fuzzy K-NN classification algorithm, the k value

could affect the accuracy as much as 15%: The proper

selection of the k value is thus important. Unfortunately,

there is no solution to determine the optimal value of

parameter k for a given data set. A trial and error process

Table 3

Accuracy for different k values in fuzzy K-NN

k Testing accuracy Validation accuracy

No. 1 No. 2 No. 3 No. 4 No. 5 No. 1 No. 2 No. 3 No. 4 No. 5

1 0.9167 0.8333 0.9167 0.9167 0.9167 0.8148 0.9259 0.8519 0.8889 0.8519

5 0.9167 0.8333 0.9167 0.9167 0.9167 0.7778 0.9259 0.8889 0.8889 0.8519

10 0.9167 0.8333 0.9167 0.8333 0.9167 0.6667 0.8889 0.8148 0.8148 0.8148

15 0.8333 0.6667 0.9167 0.8333 0.8333 0.7037 0.8889 0.8148 0.8519 0.7778

20 0.8333 0.6667 0.8333 0.8333 0.8333 0.7037 0.8889 0.8148 0.8519 0.7778

30 0.8333 0.6667 0.8333 0.8333 0.8333 0.7037 0.8519 0.7778 0.8519 0.7778

Table 4

Bootstrap accuracy estimate on fuzzy K-NN

Bootstrap Validation accuracy (%) 0:632u 0
i 0:368u 0

c

P
1 77.78 0.492 0.368 0.8596

2 92.59 0.585 0.368 0.9532

3 88.89 0.562 0.368 0.9298

4 88.89 0.562 0.368 0.9298

5 85.19 0.538 0.368 0.9064

Accuracy estimate:

91.57%
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was implemented to find the best k value among those

selected for testing.

5. For MLP neural networks, the number of hidden neurons

is very critical to the training process. The determination

of this parameter was based upon a trial and error process

of several candidate values. In addition, different values

of initial connection weights (created by using different

vales of random seeds) could have large impacts on the

training and testing accuracy. The average accuracy is

thus often obtained by initializing MLP neural networks

with several (4 in this study) random seeds.

6. MLP neural networks generally outperform the fuzzy K-

NN algorithm in this application. Based on the bootstrap

method, MLP neural networks trained with 108 defects

achieved 92.39% classification accuracy (on an average

25 out of 27 defects for validation were correctly

classified). On the other hand, fuzzy K-NN achieved

91.57% accuracy, which is slightly worse than MLP

neural networks.

To enable comparison and to further advance this area of

research, there is a need for establishing a benchmark image

set.
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